Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Immunol Immunother ; 73(2): 30, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279989

RESUMO

Recently, a breakthrough immunotherapeutic strategy of chimeric antigen receptor (CAR) T-cells has been introduced to hematooncology. However, to apply this novel treatment in solid cancers, one must identify suitable molecular targets in the tumors of choice. CEACAM family proteins are involved in the progression of a range of malignancies, including pancreatic and breast cancers, and pose attractive targets for anticancer therapies. In this work, we used a new CEACAM-targeted 2A3 single-domain antibody-based chimeric antigen receptor T-cells to evaluate their antitumor properties in vitro and in animal models. Originally, 2A3 antibody was reported to target CEACAM6 molecule; however, our in vitro co-incubation experiments showed activation and high cytotoxicity of 2A3-CAR T-cells against CEACAM5 and/or CEACAM6 high human cell lines, suggesting cross-reactivity of this antibody. Moreover, 2A3-CAR T-cells tested in vivo in the BxPC-3 xenograft model demonstrated high efficacy against pancreatic cancer xenografts in both early and late intervention treatment regimens. Our results for the first time show an enhanced targeting toward CEACAM5 and CEACAM6 molecules by the new 2A3 sdAb-based CAR T-cells. The results strongly support the further development of 2A3-CAR T-cells as a potential treatment strategy against CEACAM5/6-overexpressing cancers.


Assuntos
Neoplasias Pancreáticas , Receptores de Antígenos Quiméricos , Anticorpos de Domínio Único , Animais , Humanos , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Domínio Único/metabolismo , Neoplasias Pancreáticas/terapia , Neoplasias Pancreáticas/metabolismo , Linhagem Celular , Linfócitos T , Imunoterapia Adotiva/métodos , Ensaios Antitumorais Modelo de Xenoenxerto , Linhagem Celular Tumoral
2.
Cancers (Basel) ; 13(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34439305

RESUMO

Growing tumors avoid recognition and destruction by the immune system. During continuous stimulation of tumor-infiltrating lymphocytes (TILs) by tumors, TILs become functionally exhausted; thus, they become unable to kill tumor cells and to produce certain cytokines and lose their ability to proliferate. This collectively results in the immune escape of cancer cells. Here, we show that breast cancer cells expressing PD-L1 can accelerate exhaustion of persistently activated human effector CD4+ T cells, manifesting in high PD-1 and PD-L1 expression level son T cell surfaces, decreased glucose metabolism genes, strong downregulation of SWI/SNF chromatin remodeling complex subunits, and p21 cell cycle inhibitor upregulation. This results in inhibition of T cell proliferation and reduction of T cell numbers. The RNAseq analysis on exhausted CD4+ T cells indicated strong overexpression of IDO1 and genes encoding pro-inflammatory cytokines and chemokines. Some interleukins were also detected in media from CD4+ T cells co-cultured with cancer cells. The PD-L1 overexpression was also observed in CD4+ T cells after co-cultivation with other cell lines overexpressing PD-L1, which suggested the existence of a general mechanism of CD4+ T cell exhaustion induced by cancer cells. The ChIP analysis on the PD-L1 promoter region indicated that the BRM recruitment in control CD4+ T cells was replaced by BRG1 and EZH2 in CD4+ T cells strongly exhausted by cancer cells. These findings suggest that epi-drugs such as EZH2 inhibitors may be used as immunomodulators in cancer treatment.

3.
Oncologist ; 26(9): e1652-e1655, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34003534

RESUMO

Succinate dehydrogenase (SDH)-deficient renal cancer is a rare renal cancer subtype recently accepted by the World Health Organization as a unique subtype of renal cell carcinoma (RCC). Here we report a case of 17-year-old man. The detailed evaluation indicated occurrence of the SDHB-deficient RCC. The genetic testing revealed no germline mutation in SDH genes. Immunohistochemistry showed SDHB deficiency, overexpression of pyruvate kinase M2 and dramatic downregulation of fructose-1,6-bisphosphatase metabolic enzymes, and unaltered levels of phosphorylated AMP-activated protein kinase and mammalian target of rapamycin. Strong upregulation of INI1 and BRG1 and overexpression of BAF180, subunits of SWI/SNF ATP-dependent chromatin remodeling complex, were also found. The identified tumor pathologically did not resemble clear cell renal cell carcinoma (ccRCC), but some metabolic alterations are common for both cancer types. Thus, we postulate that the phenotypical differences between ccRCC and SDHB-deficient RCC may be related to distinct molecular and metabolic alterations. IMPLICATIONS FOR PRACTICE: Succinate dehydrogenase (SDH)-deficient renal cell carcinoma (RCC) is a rare renal tumor occurring even in young patients. Until now, in all described and genetically tested cases, mutations and deletions in SDH genes have been found. This article describes SDHB-deficient RCC without any germline mutations in SDH genes. Therefore, genetic analysis for germline mutations in SDH genes in SDH-deficient RCC, especially in young individuals, should be strongly recommended, although as of now it is not obligatory. This knowledge will allow improvement of patient monitoring including both disease recurrence and new cancer appearance.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Adolescente , Carcinoma de Células Renais/genética , Montagem e Desmontagem da Cromatina , Frutose , Frutose-Bifosfatase , Humanos , Neoplasias Renais/genética , Masculino , Recidiva Local de Neoplasia , Piruvato Quinase/genética , Succinato Desidrogenase/genética
4.
Am J Cancer Res ; 11(12): 5965-5978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35018236

RESUMO

About 40% of clear cell renal cell carcinoma (ccRCC) cases carry the pbrm1 mutation inactivating BAF180 subunit of the SWI/SNF chromatin remodeling complex (CRC). Here we show that the majority of transcriptomic changes appear at the stage I of ccRCC development. By contrast, the stage II ccRCC exhibits hyperactivation of DNA replication demonstrated by the overexpression of several genes, e.g., RRM1 and RRM2 genes encoding subunits of ribonucleotide reductase (RNR) complex. We found that the degree of RRM1 and RRM2 upregulation in ccRCC patients depends on pbrm1 mutation. We show that the BAF180 protein product of the PBRM1 gene directly binds to RRM1 and RRM2 loci. The BAF180 binding regions are targeted by regulatory proteins previously reported as SWI/SNF CRC interacting partners. BAF180 binding to RRMs loci correlates with enrichment of H3K27me3 in case of RRM1 and H3K14Ac on RRM2, indicating the existence of differential regulatory mechanism controlling expression of these genes. We found that the strong overexpression of RRM2 in ccRCC patient samples correlates with T cell infiltration. Surprisingly, the majority of tumor infiltrating lymphocytes (TILs) consisted of CD4+ T cells. Furthermore, we show that exhausted CD4+ T cells induced the expression of the RRM2 gene in the primary ccRCC cell line. Collectively, our results provide the link between PBRM1 loss, RRM2 expression and T cell infiltration, which may lead to the establishment of new treatment of this disease.

5.
IUBMB Life ; 72(6): 1220-1232, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32250548

RESUMO

Renal cell carcinoma (RCC) represents around 2-3% of all malignancies diagnosed in adult patients. Most frequent (around 70-80% cases) and the most aggressive subtype is clear cell RCC (ccRCC). Mutations in VHL (von Hippel Lindau) gene, characteristic for this cancer type, lead to altered activity of the trimeric VBC (pVHL-elongin B-C) complex and consequently to HIF-1α stabilization. In this study, we present results of exhaustive investigation of HIF-1α alternative transcript variants abundance in A498, CAKI-1, and 786-O ccRCC cell lines. We proved the existence of truncated HIF-1α protein form (HIF1A∆-6) in A498 and HIF1A gene rearrangements in 786-O cell lines. Subsequently, we found that HIF1A∆2-6 was more stable than the full-length HIF-1α. Moreover, the shorter HIF-1α was insensitive for hypoxia and was overaccumulated after proteasome inhibitor treatment indicative of potential diversified roles of full-length and truncated HIF-1α forms in the cell. We also showed that A498, CAKI-1, and 786-O exhibit differential expression of various regulatory genes involved in the control of metabolic processes, that is, glucose and lipid metabolism, and encoding subunits of such machineries like SWI/SNF chromatin remodeling complex. Furthermore, these cell lines exhibited differential responses to axitinib, everolimus, and sunitinib-anticancer drugs-in normoxia and hypoxia as well as various alterations in metabolism-related regulatory processes. Finally, we have shown that overexpression of truncated HIF1A∆2-6 form may affect the protein level of endogenous full-length HIF-1α protein. Thus, our study proves an important role of HIF-1α in the ccRCC development.


Assuntos
Antineoplásicos/farmacologia , Carcinoma de Células Renais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Renais/metabolismo , Axitinibe/farmacologia , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Everolimo/farmacologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/patologia , Inibidores de Proteínas Quinases/farmacologia , Sunitinibe/farmacologia , Hipóxia Tumoral/genética
6.
IUBMB Life ; 72(6): 1175-1188, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32073734

RESUMO

Bladder cancer (BC) is a frequently diagnosed malignancy affecting predominantly adult and elderly populations. It is expected that due to the longer life time, BC will become even more frequent in the future; thus in consequence, it will represent serious health problem of older society part. The treatment of advanced BC is mostly ineffective due to its very aggressive behavior. So far, no effective targeted therapy is used for BC treatment. Here, we found that BC is characterized by lower protein levels of BRM, INI1, and BAF155 main subunits of SWI/SNF chromatin remodeling complex (CRC) which is involved in global control of gene expression and influences various important cellular processes like: cell cycle control, apoptosis, DNA repair, etc. Moreover, the expression of SMARCA2, a BRM encoding gene, strongly correlated with BC metastasis and expression of such metabolic genes as PKM2 and PRKAA1. Furthermore, the analysis of T24 and 5637 commonly used BC cell lines revealed different expression levels of metabolic genes including FBP1 gene encoding Frutose-1,6-Bisphosphatase, an enzyme controlling glycolysis flux and gluconeogenesis. The tested BC cell lines exhibited various molecular and metabolic alterations as well as differential glucose uptake, growth rate, and migration potential. We have shown that BRM subunit is involved in the transcriptional control of genes encoding metabolic enzymes. Moreover, we found that the FBP1 expression level and the SWI/SNF CRCs may serve as markers of molecular subtypes of BC. Collectively, this study may provide a new knowledge about the molecular and metabolic BC subtypes which likely will be of high importance for the clinic in the future.


Assuntos
Glucose/metabolismo , Proteína SMARCB1/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias da Bexiga Urinária/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Idoso , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Transição Epitelial-Mesenquimal/genética , Feminino , Frutose-Bifosfatase/genética , Frutose-Bifosfatase/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteína SMARCB1/genética , Hormônios Tireóideos/genética , Hormônios Tireóideos/metabolismo , Fatores de Transcrição/genética , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/mortalidade , Neoplasias da Bexiga Urinária/patologia , Proteínas de Ligação a Hormônio da Tireoide
7.
Epigenetics Chromatin ; 12(1): 68, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31722744

RESUMO

BRM (BRAHMA) is a core, SWI2/SNF2-type ATPase subunit of SWI/SNF chromatin-remodelling complex (CRC) involved in various important regulatory processes including development. Mutations in SMARCA2, a BRM-encoding gene as well as overexpression or epigenetic silencing were found in various human diseases including cancer. Missense mutations in SMARCA2 gene were recently connected with occurrence of Nicolaides-Baraitser genetics syndrome. By contrast, SMARCA2 duplication rather than mutations is characteristic for Coffin-Siris syndrome. It is believed that BRM usually acts as a tumour suppressor or a tumour susceptibility gene. However, other studies provided evidence that BRM function may differ depending on the cancer type and the disease stage, where BRM may play a role in the disease progression. The existence of alternative splicing forms of SMARCA2 gene, leading to appearance of truncated functional, loss of function or gain-of-function forms of BRM protein suggest a far more complicated mode of BRM-containing SWI/SNF CRCs actions. Therefore, the summary of recent knowledge regarding BRM alteration in various types of cancer and highlighting of differences and commonalities between BRM and BRG1, another SWI2/SNF2 type ATPase, will lead to better understanding of SWI/SNF CRCs function in cancer development/progression. BRM has been recently proposed as an attractive target for various anticancer therapies including the use of small molecule inhibitors, synthetic lethality induction or proteolysis-targeting chimera (PROTAC). However, such attempts have some limitations and may lead to severe side effects given the homology of BRM ATPase domain to other ATPases, as well as due to the tissue-specific appearance of BRM- and BRG1-containing SWI/SNF CRC classes. Thus, a better insight into BRM-containing SWI/SNF CRCs function in human tissues and cancers is clearly required to provide a solid basis for establishment of new safe anticancer therapies.


Assuntos
Neoplasias/patologia , Fatores de Transcrição/metabolismo , Animais , Montagem e Desmontagem da Cromatina , Síndrome de Coffin-Lowry/genética , Síndrome de Coffin-Lowry/patologia , Progressão da Doença , Epigenômica , Fácies , Deformidades Congênitas do Pé/genética , Deformidades Congênitas do Pé/patologia , Humanos , Hipotricose/genética , Hipotricose/patologia , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
8.
J Cancer Res Clin Oncol ; 145(1): 201-211, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30382367

RESUMO

PURPOSE: Adenoid cystic carcinoma (ACC) is a rare neurotropic cancer with slow progression occurring in salivary glands and less frequently in other body parts. ACC is featured by hyperchromatic nuclei and various mutations in genes encoding chromatin-related machineries. The ACC treatment is mainly limited to the radical surgery and radiotherapy while the chemotherapy remains ineffective. As the knowledge about molecular basis of ACC development is limited, we investigated here the molecular features of this disease. PATIENTS AND METHODS: This study included 50 patients with ACC. Transcript profiling of available ACC samples vs normal salivary gland tissue, quantitative real-time PCR (qRT-PCR) transcript level measurements and the immunohistochemistry (IHC) for SWI/SNF chromatin remodeling complex (CRC) subunits and androgen receptor on surgery-derived paraffin-embedded samples were performed. RESULTS: Transcriptomic study followed by Gene Ontology classification indicated alteration of chromatin-related processes, including downregulated transcript levels of main SWI/SNF CRC subunits and elevated expression of BRM ATPase-coding SMARCA2 gene in ACC. Subsequent IHC indicated broad accumulation of BRM ATPase and several SWI/SNF subunits, suggesting affected control of their protein level in ACC. The IHC revealed ectopic, heterogeneous expression of androgen receptor (AR) in some ACC cells. CONCLUSIONS: Our study indicated that ACC features aberrant expression of genes controlling chromatin status and structure. We found that the balance between SWI/SNF classes is moved towards the BRM ATPase-containing complex in ACC. As BRM is known to be involved in chemoresistance in cancer cells, this observation may be the likely explanation for ACC chemoresistance.


Assuntos
Carcinoma Adenoide Cístico/patologia , Montagem e Desmontagem da Cromatina , Fatores de Transcrição/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Adenoide Cístico/genética , Carcinoma Adenoide Cístico/metabolismo , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores Androgênicos/genética , Fatores de Transcrição/genética , Transcriptoma , Adulto Jovem
9.
Am J Cancer Res ; 7(11): 2275-2289, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29218250

RESUMO

Clear cell renal cell carcinoma (ccRCC) is characterized by stabilization of hypoxia-inducible factor (HIF1), and mutations in von Hippel-Lindau (VHL) gene. Additionally, in about 40% of ccRCC cases the mutation in PBRM1 (POLYBROMO1) gene coding for a non-core subunit of SWI/SNF chromatin remodeling complex was found suggesting potential impairment of this complex function in ccRCC. In this study we assessed the extent to which the core SWI/SNF complex subunit - INI1 (hSNF5/SMARCB1) is affected in ccRCC and whether it has any consequences on the development of this type of cancer. The evaluation of INI1 protein level in samples from 50 patients with diagnosed ccRCC, including three displaying rhabdoid features, showed the INI1 positive staining in rhabdoid cells while the conventional ccRCC cells exhibited reduced INI1 level. This indicated the rhabdoid component of ccRCC as distinct from other known rhabdoid tumors. The reduced INI1 protein level observed in all conventional ccRCC cases used in this study correlated with decreased SMARCB1 gene expression at the transcript level. Consistently, the overexpression of INI1 protein in A498 ccRCC cell line resulted in the elevation of endogenous SMARCB1 transcript level indicating that the INI1-dependent regulatory feedback loop controlling expression of this gene is affected in ccRCC Moreover, the set of INI1 target genes including i.e. CXCL12/CXCR7/CXCR4 chemokine axis was identified to be affected in ccRCC. In summary, we demonstrated that the inactivation of INI1 may be of high importance for ccRCC development and aggressiveness.

10.
Plant Cell ; 27(7): 1889-906, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26106148

RESUMO

Arabidopsis thaliana SWP73A and SWP73B are homologs of mammalian BRAHMA-associated factors (BAF60s) that tether SWITCH/SUCROSE NONFERMENTING chromatin remodeling complexes to transcription factors of genes regulating various cell differentiation pathways. Here, we show that Arabidopsis thaliana SWP73s modulate several important developmental pathways. While undergoing normal vegetative development, swp73a mutants display reduced expression of FLOWERING LOCUS C and early flowering in short days. By contrast, swp73b mutants are characterized by retarded growth, severe defects in leaf and flower development, delayed flowering, and male sterility. MNase-Seq, transcript profiling, and ChIP-Seq studies demonstrate that SWP73B binds the promoters of ASYMMETRIC LEAVES1 and 2, KANADI1 and 3, and YABBY2, 3, and 5 genes, which regulate leaf development and show coordinately altered transcription in swp73b plants. Lack of SWP73B alters the expression patterns of APETALA1, APETALA3, and the MADS box gene AGL24, whereas other floral organ identity genes show reduced expression correlating with defects in flower development. Consistently, SWP73B binds to the promoter regions of APETALA1 and 3, SEPALLATA3, LEAFY, UNUSUAL FLORAL ORGANS, TERMINAL FLOWER1, AGAMOUS-LIKE24, and SUPPRESSOR OF CONSTANS OVEREXPRESSION1 genes, and the swp73b mutation alters nucleosome occupancy on most of these loci. In conclusion, SWP73B acts as important modulator of major developmental pathways, while SWP73A functions in flowering time control.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Subunidades Proteicas/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/embriologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Imunoprecipitação da Cromatina , Flores/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Nuclease do Micrococo/metabolismo , Mutagênese Insercional/genética , Mutação/genética , Nucleossomos/metabolismo , Folhas de Planta/genética , Regiões Promotoras Genéticas/genética , Ligação Proteica , Subunidades Proteicas/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...